SEMESTER I

15NB01 NUMBER THEORY AND QUANTITATIVE TECHNIQUES
Vide Information Technology 15NN01

15NB02 OBJECT ORIENTED PROGRAMMING
Vide Information Technology 15NN02

15NB03 DATA STRUCTURES AND ALGORITHMS
Vide Information Technology 15NN03

15NB04 NETWORKING TECHNOLOGY
Vide Information Technology 15NN04

15NB05 BIOMETRIC TECHNOLOGIES

3 0 0 3

(9)

PHYSIOLOGICAL BIOMETRICS: Facial scan, Ear scan, Retina scan, Iris scan, Finger scan, Automated fingerprint identification system, Palm print, Hand vascular geometry analysis, Knuckle, DNA, Dental, Cognitive Biometrics - ECG, EEG.

(10)

BEHAVIOURAL BIOMETRICS: Signature scan, Keystroke scan, Voice scan, Gait recognition, Gesture recognition, Video face, Mapping the body technology.

(8)

(9)

(9)

Total L: 45

REFERENCES:

15NB51 DATA STRUCTURES LABORATORY
Vide Information Technology 15NB51

15NB61 INDUSTRY VISIT AND TECHNICAL SEMINAR

0 0 2 1

The student will make atleast two technical presentations on current topics related to the specialization. The same will be assessed by a committee appointed by the department. The students are expected to submit a report at the end of the semester covering the
various aspects of his/her presentation together with the observation in industry visits. A quiz covering the above will be held at the end of the semester.

Total P: 30

SEMESTER II

15NB06 APPLIED CRYPTOGRAPHY

3003

INTRODUCTION: Modern cryptography, Historical ciphers and cryptanalysis, Security attacks, services and mechanisms, OSI security architecture. (6)

SYMMETRIC TECHNIQUES: Substitution ciphers, Transposition ciphers, Characteristics of good ciphers, Data Encryption Standard (DES), Advanced Encryption Standard (AES), Blowfish, Block cipher modes of operation, Stream cipher: RC5. (9)

ASYMMETRIC TECHNIQUES: Basics of number theory, Principles of public key cryptosystems, RSA Algorithm, Key management, Diffie-Hellman key exchange algorithm, Elliptic Curve Cryptography (ECC), Case study: eCash, PAKE protocol. (9)

HASH FUNCTIONS: Introduction, Applications, Requirements and security, Secure Hash Algorithm (SHA), RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160). (7)

MESSAGE AUTHENTICATION: Authentication requirements, Authentication functions, Message Authentication Codes (MAC), Hash-based Message Authentication Code (HMAC) (7)

DIGITAL SIGNATURES: Digital Signatures, Authentication Protocols, Digital Signature Standard (DSS), Elgamal, Schnorr, Applications. (7)

REFERENCES:

Total L: 45

15NB07 BIOMETRIC IMAGE PROCESSING

3003

INTRODUCTION: Digital image representation, Fundamental steps in image processing, Elements of digital image processing system, Image sensing and acquisition, Sampling and quantization, Basic relationship between pixels, Transformation technology: Fourier transform - Discrete cosine transform. (9)

IMAGE ENHANCEMENT: Spatial domain methods: Basic gray level transformations - Histogram equalization - Smoothing spatial filter - Sharpening spatial filters - Laplacian, Frequency domain methods: Smoothing and sharpening filters – Ideal - Butterworth - Gaussian filters. Image Segmentation: Point- Line and edge detection - Thresholding - Global and multiple thresholding, Region splitting and merging, Boundary following. (9)

MORPHOLOGICAL IMAGE PROCESSING: Fundamental concepts and operations, Dilation and Erosion, Compound operations, Morphological filtering, Basic morphological algorithms, Grayscale morphology. (5)

2D AND 3D FACE BIOMETRICS: Global face recognition techniques: Principal component analysis - Face recognition using PCA - Linear discriminant analysis - Face recognition using LDA, Local face recognition techniques: Geometric techniques - Elastic graph matching techniques, Hybrid face recognition techniques. 3D FACE IMAGE: Acquisition, Preprocessing and normalization, 3D face recognition. (9)
HAND AND IRIS BIOMETRICS: Characterization by minutiae extraction: Histogram equalization, Binarization, Skeletonization, Detection of minutiae, Matching, Performance evaluation, Preprocessing of iris images: Extraction of region of interest - Construction of noise mask – Normalization - Features extraction and encoding - Similarity measures between two iris codes.

(8)

FUSION IN BIOMETRICS: Multi-biometrics, Levels of fusion: Sensor level - Feature level - Rank level - Decision level fusion - Score level fusion.

(5)

REFERENCES:

15NB08 CYBER SECURITY AND INVESTIGATIONS

(8+5)

ATTACKER TECHNIQUES: Tunneling and fraud techniques, Threat infrastructure, Exploitation: Techniques to gain a foothold - Misdirection, Reconnaissance and disruption methods, Malicious codes: Self-replicating codes - Evading detection and elevating privileges - Stealing information and exploitation

(7+5)

DEFENSE AND ANALYSIS TECHNIQUES: Memory forensics: Importance - Capabilities - Framework - Dumping physical memory - Installing and using volatility - Finding hidden process - Volatility analyst pack, Honeypots, Malicious code naming and automated analysis system – DNS , Firewalls

(8+5)

INTRUSION DETECTION: Network vs. Host based detection, Anatomy and process, Network based and host based intrusion detection systems: Architecture - Detection engine - Operational concept - Benefits and challenges, Detection mechanism, Signatures, Traffic analysis, Intrusion detection

(7+5)

CYBERCRIME: Nature and scope, Classification, Social engineering, Internet hacking and cracking, Flooding, Software piracy, Phishing, Online frauds and offenses, Identity theft.

(8+5)

(7+5)

Total L:45+T:30=75

REFERENCES:

15NB09 DIGITAL FORENSICS

(9+6)

Total L:32+T:4=36
COMPUTER EVIDENCE: Handling Digital Crime Scene: Fundamental Principles - Preparation - Preservation, Forensic Evidence Collection: Storage formats - RAID Data acquisition - Seizing and Protecting evidence, Data Recovery: Disk structure and recovery techniques - Data Backup and Recovery. (9+6)

DIGITAL EVIDENCE ON OPERATING SYSTEMS: Windows: File systems - Data recovery - Log files - Registry - Internet traces - Program analysis, UNIX: Evidence acquisition boot disk - File systems - Overview of tools - Log files - File system traces and Internet traces. (9+6)

E-MAIL AND MOBILE DEVICE FORENSICS: Email Forensics: Role of email in investigation - Investigating E-mail Crimes and Violations - E-mail Servers, Mobile Device Forensics: Fundamentals - Types of Evidence Acquisition Procedures - Mobile Device Forensic Tools. (9+6)

REFERENCES:

15NB10 PATTERN RECOGNITION

REPRESENTATION: Introduction to pattern recognition, Data sets for pattern recognition, Pattern representation, Cluster representation, Feature extraction, Analysis, Feature selection, Applications of pattern recognition. (7)

NEAREST NEIGHBOUR BASED CLASSIFIERS: Nearest neighbor algorithm, Variants of the NN algorithm, Use of the nearest neighbor algorithm, Branch and bound algorithm, Data reduction, Prototype selection. (8)

BAYES CLASSIFIER: Introduction, Continuous features, Minimum error rate classification, Classifiers, Discriminant functions and decision surfaces, Normal density and its discriminate function, Discrete features, Estimation of probabilities. (8)

HIDDEN MARKOV MODELS: Markov models for Classification, Hidden Markov models: HMM parameters - Learning HMMs, Classification using HMMs. (8)

DECISION TREES: Introduction, Decision trees for pattern classification, Construction of decision trees, Splitting at the nodes, Over fitting and pruning. (7)

CLUSTERING: Hierarchical Algorithms- Divisive clustering - Agglomerative clustering, Partitional clustering, Clustering large data sets. (7)

Total L:45

REFERENCES:

15NB52 BIOMETRIC IMAGE PROCESSING LABORATORY

1. Image transformation
2. Image enhancement
3. Image segmentation
4. Morphological image processing
5. Feature extraction and recognition
6. Mini Project

Total P: 60

SEMESTER III

15NB53 SECURITY AND PENETRATION TESTING LABORATORY

0 0 4 2

1. Foot printing
2. Port scanning
3. Windows and Linux Enumerations
4. Hacking web applications
5. Hacking web servers
6. Network hacking
7. Database hacking
8. Sniffer tools
9. Antivirus Programming
10. Password cracking

Total P: 60

15NB71 PROJECT WORK - I

0 0 6 3

- Identification of a real life problem in thrust areas
- Developing a mathematical model for solving the above problem
- Finalization of system requirements and specification
- Proposing different solutions for the problem based on literature survey
- Future trends in providing alternate solutions
- Consolidated report preparation of the above

Total P: 90

SEMESTER IV

15NB72 PROJECT WORK - II

0 0 28 14

The project involves the following:

Preparation a project – brief proposal including

- Problem Identification
- A statement of system / process specifications proposed to be developed (block diagram / Concept tree)
- Cost benefit analysis
- Time Line of activities

A report highlighting the design finalization [based on functional requirements & standards (if any)]

A presentation including the following:

- Implementation Phase (Hardware / Software / both)
- Testing & Validation of the developed system
- Learning in the project

Consolidated report preparation

Total P: 420
ELECTIVE THEORY COURSES
(Six to be opted out of which two may be an open elective from other M.E/M.Tech programmes)

15NB21 COMPUTER VISION

INTRODUCTION: Motivation, Difficulty, Image analysis tasks, Image representations, Image digitization, Image properties, Color images, Cameras. (9)

DATA STRUCTURES: Levels of image data representation - Traditional image data structures - Hierarchical data structures. (3)

TEXTURE: Statistical texture description, Syntactic texture description methods, Hybrid texture description methods, Texture recognition method applications. (9)

OBJECT RECOGNITION: Knowledge representation, Statistical pattern recognition, Neural nets, Syntactic pattern recognition, Recognition as graph matching, Optimization techniques in recognition, Fuzzy systems. (8)

3D VISION: 3D vision: Tasks - Basics of projective geometry - Scene construction from multiple views, Uses: Shape from X - Full 3D objects - 3D model based vision - 2D view based 3D representation. (9)

MOTION ANALYSIS: Differential motion analysis methods, Optical flow, Analysis based on interest points, Detection of specific motion patterns, Video Tracking, Motion models to aid tracking. (7)

Total L:45

REFERENCES:

15NB22 DATA MINING
Vide Information Technology 15NN07

15NB23 INFORMATION ETHICS AND LAWS

COMPUTER ETHICS: Introduction, Acts versus rules, Utilitarianism, Critique of utilitarianism, Virtue ethics, Analogical reasoning in computer ethics, Moral and legal issues, Power relationships, Professional issues and responsibilities. (8)

PRIVACY: Privacy protection and law, Key privacy and anonymity issues, Email privacy, Workplace spying, Privacy as individual good, Contextual integrity, Social good essential for democracy. (7)

INTERNET CRIME: Ethics for IT workers, Implementing trustworthy computing, Democracy and Internet, Global perspective, Proposals for better privacy protection, Freedom of expression. (7)

PROPERTY RIGHTS: Intellectual property rights, Current legal protection, Philosophical basis and analysis of property, Digital IPR, Protecting property rights. (8)

PROFESSIONAL ETHICS IN COMPUTING: Characteristics of professions, Formal organization, Autonomy, Codes of ethics, Culture of computing, Professional relationships. (7)

DIGITAL LAWS: Law and order in the Internet, Online crime, Democratic values in Internet, Hackers ethics, Sociotechnical security, Free expression, Overarching and future issues. (8)

Total L:45
REFERENCES:

15NB24 OPERATING SYSTEM AND ITS SECURITY

INTRODUCTION: Operating system services, Types of operating systems, Operating System Structures. (4)

PROCESS AND MEMORY MANAGEMENT: Processes, CPU scheduling approaches, Interprocess communication, Synchronization, Deadlocks, Swapping, Virtual memory, Page replacement algorithms. (10)

DEVICE AND FILE MANAGEMENT: I/O hardware, I/O software, Disks, Disk scheduling algorithms, File systems: Files and directories - Access methods - Allocation methods. (8)

SECURITY ISSUES: Protection in General Purpose Operating Systems: protected objects and methods of protection, Memory and address protection, Control of access to general objects, File protection mechanism, User authentication. (8)

Total L:45

REFERENCES:

15NB25 SPEECH PROCESSING

MECHANICS OF SPEECH: Speech signal, Speech stack, Discrete time signals and systems, Digital filters, Sampling, Process of speech production, Short time Fourier representation of speech, Acoustic phonetics. (7)

TIME DOMAIN METHODS: Short time analysis of speech, Energy and magnitude, Zero crossing rate, Autocorrelation function, Average magnitude difference function. (8)

FREQUENCY DOMAIN METHODS: Discrete-time and short time Fourier analysis, Spectrographic displays, Overlap addition method of synthesis, Filter bank summation method of synthesis, Implementation using FFT, Time decimated filter banks, Two channel filter banks. (8)

HOMOMORPHIC AND CEPSTRUM SPEECH PROCESSING: Homomorphic systems for convolution, Homomorphic analysis of the speech model, Computing the short time cepstrum and complex cepstrum of speech, Homomorphic filtering of natural speech, Cepstrum analysis of all-pole models, Cepstrum distance measures. (7)

LINEAR PREDICTIVE ANALYSIS: Basic principles, Computation of the gain for the model of linear predictive analysis, Frequency domain interpretations of linear predictive analysis, Solution of the Liner Predictive Code (LPC) equations, Prediction error signal, Relation of LPC to lossless tube models. (8)
ESTIMATION OF SPEECH PARAMETERS: Median smoothing and speech processing, Speech background/silence discrimination, Bayesian approach to voiced/unvoiced/silence detection, Pitch period estimation, Formant estimation, Automatic Speech Recognition System. (7)

REFERENCES:

15NB26 SOFT COMPUTING

NEURAL NETWORKS: Human brain, Model of an artificial neuron, Neural network architectures, Characteristics, Learning methods. (5)

SUPERVISED LEARNING: Back propagation networks, Single layer and multi layer perceptron networks, ADALINE, MADALINE, Radial basis function network. (7)

GENETIC ALGORITHMS: Basic concepts, Biological background, Creation of offsprings, Working principle, Encoding, Fitness function, Reproduction, Applications of genetic algorithms. (8)

ADVANCED TECHNIQUES: Simulated Annealing, Tabu search, Ant Colony Optimization(ACO), Particle Swarm Optimization(PSO). (8)

REFERENCES:

15NB27 INFORMATION THEORY AND CODING

INFORMATION ENTROPY FUNDAMENTALS: Relation between information and probability, mutual and self information, information entropy, Shannon's theorem, Code design, Shannon-Fano coding, Huffman coding, Implementation of Huffman code. (8)

DATA AND VOICE CODING: Context dependent coding, arithmetic codes, overall efficiency consideration. Voice coding, PCM, ADPCM, Delta Modulation and adaptive delta modulation, linear predictive coding, sub-band coding. (10)

IMAGE AND VIDEO COMPRESSION: Direct cosine transform, quantization loss, loss estimation, JPEG components and standards Inter frame, coding, motion compensation techniques, MPEG-2 standards, Introduction to MPEG-4. (9)
BLOCK CODES: Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes, Repetition codes - Linear block codes, Cyclic codes - Syndrome calculation, Encoder and decoder – CRC.

CONVOLUTIONAL CODES: Convolutional codes – code tree, trellis, state diagram - Encoding – Decoding: Sequential search and Viterbi algorithm – Principle of Turbo coding.

REFERENCES:

15NB28 SECURITY IN CLOUD COMPUTING

INTRODUCTION: Basics of distributed concepts, Grid computing; Architecture - Virtual organization - Web services vs grid services, Grid vs cloud computing, Roots of cloud computing, Deployment models, Service models, Refactoring.

ARCHITECTURAL FRAMEWORK: SPI framework, Cloud deployment models: Public cloud - Private cloud - Hybrid cloud, Expected benefits.

VIRTUALIZATION: Types, Provisioning and manageability, Migration, Provisioning in the cloud context, Management of virtual machine: Anatomy of cloud infrastructures - Scheduling techniques for advance reservation of capacity.

SOFTWARE SECURITY FUNDAMENTALS: Objectives, Cloud security services, Design principles, Secure cloud software requirements, NIST 33 security principles, Cloud security alliance, Infrastructure security: Network level - Host level - Application level, Data storage security: Aspects of security - Data mitigation - Provider data security.

SECURITY MANAGEMENT AND RISK ISSUES: Security management: Standards - Security management in cloud, CIA triad, Privacy and compliance risks, Threats to infrastructure, Data and access control, Cloud service provider risks.

SECURITY CHALLENGES AND ARCHITECTURE: Security policy implementation: Regulatory policy - Advisory policy - Informative policy, Virtualization security management: Virtual threats, VM security recommendations, VM specific security techniques, Trusted cloud computing, Identity management and access control: Passwords - Tokens - Memory cards - Smart cards - Biometrics - Single sign-on - Autonomic security.

REFERENCES:
15NB29 DIGITAL WATERMARKING AND STEGANOGRAPHY

MESSAGE CODING AND SIDE INFORMATION: Mapping messages into message vectors, Error correction coding, Detecting multi-symbol watermarks. Informed embedding, Watermarking using side information, Dirty paper codes. (8)

ROBUST WATERMARKING: Approaches, Redundant embedding, Spread spectrum coding, Embedding in perceptually significant coefficients and coefficients of known robustness, Inverting distortions in the detector, Robustness to Valumetric Distortions, Temporal and geometric distortions. (7)

STEGANOGRAPHY: Introduction, Importance, Applications, Properties, communication, Notation and terminology, Information theoretic foundations, Practical steganographic methods, Minimizing the embedding impact. (7)

STEGANALYSIS: Steganalysis scenarios, Detection, Forensic steganalysis, Influence of the cover work, Significant steganalysis algorithms, Blind steganalysis. (8)

REFERENCES:

15NB30 DISTRIBUTED SYSTEMS AND SECURITY

INTRODUCTION: Characteristics of distributed systems, Types of distributed system, Examples of distributed systems, Different distributed architectures, Challenges in designing distributed system, System models, Distributed computing environment. (5)

COMMUNICATION: Client server model, Message ordering and group communication, Remote Procedure Call (RPC): Basic operation - Parameter passing - Dynamic binding - Failures - Implementation issues - RPCs in heterogeneous environment, Remote Method Invocation (RMI). (7)

SYNCHRONIZATION: Clock synchronization, Physical clocks, Logical clocks, Election algorithms, Mutual exclusion, Deadlocks. (6)

SECURITY: Secure channels, Access control, Security management, Example: Kerberos - SESAME - Electronic payment systems. (8)

THREATS AND VULNERABILITIES: Host level: Eavesdropping - Job faults - Resource starvation - Overflow - Injection attacks, Infrastructure level: Network - Storage – Application. (10)

REFERENCES:

15NB31 DATABASE DESIGN AND ITS SECURITY

INTRODUCTION: Data models, Structure of relational databases, Components of management system, Database languages, SQL standard, Database users and administrators.

RELATIONAL DBMS: Design issues, Normal forms, Transforming E-R diagram to relations, Integrity constraints, Query processing and optimization.

TRANSACTION PROCESSING: Transaction concept, Concurrent execution, Isolation, Serializability, Concurrency control: Lock based - Timestamp based - Validation based protocols, Multi-version schemes, Deadlock handling.

DATABASE AUDITING: Auditing overview, environment, process, objectives, classification and types, benefits and side effects of auditing, usage of database activities, creating DLL triggers, auditing database activities with oracle.

REFERENCES:

15NB32 WIRELESS SECURITY

INTRODUCTION: Mobile Cellular Networks, IEEE Wireless Networks, Mobile Internet Networks.

WIRELESS THREATS: Kinds of security breaches, Eavesdropping, Communication Jamming, Radio Frequency (RF) interference, Covert wireless channels, Denial of Service (DOS) attack, Spoofing, Theft of services, Traffic Analysis, Cryptographic threats.

BLUETOOTH SECURITY: Specifications, Piconets, Bluetooth security architecture, Scatternets, Security at the baseband layer and link layer, Frequency hopping, Security manager, Authentication, Encryption, Threats to Bluetooth security.

REFERENCES:

ONE CREDIT COURSES

For the detailed syllabi of the electives and one credit courses offered by other departments refer to the syllabi of M.E- Automotive Engineering offered by Automobile Engineering Department.