STUDENT SATISFACTION SURVEY

FOR THE ACADEMIC YEAR: 2019-20

PSG COLLEGE OF TECHNOLOGY
Coimbatore – 641 004

Government Aided Autonomous College
Affiliated to Anna University - Chennai
ISO 9001:2015 Certified
Accredited by NAAC with ‘A’ Grade
APPAREL AND FASHION DESIGN

MSc Fashion Design and Merchandising

1. Feedback on the attainment of programme outcomes (PO)

PO1: Design Skills: Apply knowledge of art, design, textiles and forecasting in designing garments.

- Excellent: 63.2%
- Very Good: 23.7%
- Good: 13.2%
- Fair: 0%

PO2: Problem analysis: Identify, formulate, and solve problems related to design, production, garment fit and management.

- Excellent: 44.7%
- Very Good: 28.9%
- Good: 26.3%
- Fair: 0%
PO3: Design/development of solutions: Apply information, knowledge, creativity and skills effectively to design and develop clothing.

PO4: Conduct investigations of complex problems: Apply the knowledge of applied geometry, research methods and applied science in fashion design.

PO5: Modern tool usage: Apply improved methods of techniques, resources and IT tools to take business decisions in the apparel industry.
PO6: Designer and society: Design a product or process to meet desired needs within realistic constraints such as economic, social, political, health, safety and manufacturability.
PO7: Environment and sustainability: Understand the impact of professional design solutions in societal and environmental contexts and demonstrate the knowledge and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities in society.
PO9: Individual and team work: Function effectively as an individual or in multidisciplinary teams.

PO10: Communication: Communicate effectively both orally and in writing by preparing portfolio, craft document, and technical documents.
PO11: Management and finance: Understand the professional, legal, financial, marketing and sales issues.

PO12: Lifelong learning: Recognize the need and ability to engage in independent and lifelong learning in the broadest context of environmental change in the society.
2. Feedback on the attainment of programme specific outcomes (PSO)

PSO1: Design clothing by understanding the elements & principles of design, history of costumes, art & craft, illustrations, trend forecast and software.

PSO2: Understand the properties and applications of textile fibers, fabric manufacturing process, dyeing, printing, finishing and testing of textiles in garment manufacture.
PSO3: Understand the apparel production process and analyze the fit, cost and performance.

PSO4: Recognize the existing and emerging trends in apparel manufacturing process in retail and export environment and have an understanding of business practices within global clothing industry.

3. Rate the impact of teaching-learning process in attaining the programme outcomes
4. Grade the quality of the programme on a scale of one (least) to five (most)
B.E Automobile Engineering

Overall exit feedback

M.E Automotive Engineering

Overall exit feedback
DEPARTMENT OF BIOMEDICAL ENGINEERING

BE Biomedical Engineering

![PO Attainment from Exit survey feedback - BME](image)

DEPARTMENT OF BIOTECHNOLOGY

B. Tech Biotechnology

<table>
<thead>
<tr>
<th>PO</th>
<th>Program Outcome statement</th>
<th>Total No. of Student given feedback</th>
<th>Feedback on PO in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>The graduates will be able to apply knowledge of mathematics, sciences and engineering</td>
<td>54</td>
<td>Excellent 38.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very Good 51.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good 9.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fair 0.00</td>
</tr>
<tr>
<td>b</td>
<td>The graduates will have broad understanding of life science technologies</td>
<td>54</td>
<td>Excellent 50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very Good 35.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good 14.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fair 0.00</td>
</tr>
<tr>
<td>c</td>
<td>The graduates will be knowledgeable about contemporary developments and technological</td>
<td>54</td>
<td>Excellent 29.63</td>
</tr>
<tr>
<td></td>
<td>challenges</td>
<td></td>
<td>Very Good 42.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good 27.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fair 0.00</td>
</tr>
<tr>
<td>d</td>
<td>The graduates will demonstrate ability to conduct experiments, collect, analyze, and</td>
<td>54</td>
<td>Excellent 55.56</td>
</tr>
<tr>
<td></td>
<td>interpret data</td>
<td></td>
<td>Very Good 33.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good 11.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fair 0.00</td>
</tr>
<tr>
<td>e</td>
<td>The graduates will be able to design a process, a product, or a system within constraints</td>
<td>54</td>
<td>Excellent 24.07</td>
</tr>
<tr>
<td></td>
<td>of cost, social relevance, safety, economics, ethics,</td>
<td></td>
<td>Very Good 50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good 25.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fair 0.00</td>
</tr>
</tbody>
</table>
The graduates will be effective in multi-disciplinary teams in biosystem design and development, drug discovery, and process optimization

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>50.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>40.74</td>
</tr>
<tr>
<td>Good</td>
<td>09.26</td>
</tr>
<tr>
<td>Fair</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The graduates will be able to participate and contribute to biotechnological problems at the frontier

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>62.96</td>
</tr>
<tr>
<td>Good</td>
<td>9.26</td>
</tr>
<tr>
<td>Fair</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The graduates will display professional and ethical behaviour

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>20.37</td>
</tr>
<tr>
<td>Good</td>
<td>7.41</td>
</tr>
<tr>
<td>Fair</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The graduates will be able to communicate professionally

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>70.37</td>
</tr>
<tr>
<td>Good</td>
<td>24.07</td>
</tr>
<tr>
<td>Fair</td>
<td>5.56</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The graduates will display skills required for continuous learning and professional upgradation

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>55.56</td>
</tr>
<tr>
<td>Good</td>
<td>35.19</td>
</tr>
<tr>
<td>Fair</td>
<td>9.26</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The graduates will be able to adapt to changing professional and skill requirements

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>62.96</td>
</tr>
<tr>
<td>Good</td>
<td>33.33</td>
</tr>
<tr>
<td>Fair</td>
<td>3.70</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The graduates will be able to plan, formulate, execute, and manage projects in the domain of life sciences, bioprocess, and bioinformatics

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>35.19</td>
</tr>
<tr>
<td>Good</td>
<td>51.85</td>
</tr>
<tr>
<td>Fair</td>
<td>12.96</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Rate the impact of Teaching-learning process in attaining the Programme Outcomes:
Total No. of Student given feedback: 54

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Quality of programme in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>44.45</td>
</tr>
<tr>
<td>4</td>
<td>48.15</td>
</tr>
<tr>
<td>3</td>
<td>7.40</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Grade the quality of the programme on a scale of one (least) to five(most)
Total No. of Student given feedback: 54
M. Tech Biotechnology

<table>
<thead>
<tr>
<th>PO</th>
<th>Program Outcome statement</th>
<th>Total No. of Student given feedback</th>
<th>Feedback on PO in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>a</td>
<td>An ability to independently carry out research and identify, formulate and solve biological problems</td>
<td>16</td>
<td>6.25</td>
</tr>
<tr>
<td>b</td>
<td>An ability to articulate facts and ideas through reports and documents.</td>
<td>16</td>
<td>12.50</td>
</tr>
<tr>
<td>c</td>
<td>An ability to demonstrate mastery in biosciences, bioprocess or bioinformatics.</td>
<td>16</td>
<td>6.25</td>
</tr>
<tr>
<td>d</td>
<td>An ability to adapt to changing professional requirements.</td>
<td>16</td>
<td>12.50</td>
</tr>
</tbody>
</table>

Rate the impact of Teaching-learning process in attaining the Programme Outcomes:
Total No. of Student given feedback: 16

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Impact of TLP in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>18.75</td>
</tr>
<tr>
<td>Very Good</td>
<td>43.75</td>
</tr>
<tr>
<td>Good</td>
<td>37.50</td>
</tr>
<tr>
<td>Fair</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Grade the quality of the programme on a scale of one (least) to five(most)
Total No. of Student given feedback: 16

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Quality of programme in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>31.25</td>
</tr>
<tr>
<td>4</td>
<td>56.25</td>
</tr>
<tr>
<td>3</td>
<td>12.50</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
</tbody>
</table>
DEPARTMENT OF CIVIL ENGINEERING

BE Civil Engineering

B.E - CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>PROGRAMME OUTCOMES</th>
<th>ATTAINMENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>81.5</td>
</tr>
<tr>
<td>PO2</td>
<td>80.4</td>
</tr>
<tr>
<td>PO3</td>
<td>83.3</td>
</tr>
<tr>
<td>PO4</td>
<td>83.0</td>
</tr>
<tr>
<td>PO5</td>
<td>76.1</td>
</tr>
<tr>
<td>PO6</td>
<td>81.2</td>
</tr>
<tr>
<td>PO7</td>
<td>83.3</td>
</tr>
<tr>
<td>PO8</td>
<td>85.9</td>
</tr>
<tr>
<td>PO9</td>
<td>84.1</td>
</tr>
<tr>
<td>PO10</td>
<td>85.5</td>
</tr>
<tr>
<td>PO11</td>
<td>85.9</td>
</tr>
<tr>
<td>PO12</td>
<td>84.4</td>
</tr>
</tbody>
</table>

B.E - CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>ATTAINMENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEACHING LEARNING PROCESS</th>
<th>OVERALL QUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.2</td>
<td>87.5</td>
</tr>
</tbody>
</table>
ME - Structural Engineering

M.E - STRUCTURAL ENGINEERING

<table>
<thead>
<tr>
<th>PROGRAMME OUTCOMES</th>
<th>ATTAINMENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO 1</td>
<td>76</td>
</tr>
<tr>
<td>PO 2</td>
<td>78</td>
</tr>
<tr>
<td>PO 3</td>
<td>69</td>
</tr>
<tr>
<td>PO 4</td>
<td>67</td>
</tr>
<tr>
<td>PO 5</td>
<td>77</td>
</tr>
<tr>
<td>PO 6</td>
<td>75</td>
</tr>
</tbody>
</table>
ME Infrastructure Engineering

![Graph showing teaching-learning process and overall quality of the programme](image)

![Graph showing PO attainment for various programme outcomes](image)
M-E-INFRASTRUCTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Category</th>
<th>Attainment %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Learning</td>
<td>81.11</td>
</tr>
<tr>
<td>Overall Quality of the Program</td>
<td>82.22</td>
</tr>
</tbody>
</table>
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BE-Computer Science and Engineering

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>25</td>
<td>33</td>
<td>29</td>
<td>56</td>
<td>57</td>
<td>37</td>
<td>33</td>
<td>70</td>
<td>82</td>
<td>72</td>
<td>38</td>
</tr>
<tr>
<td>Very Good</td>
<td>88</td>
<td>80</td>
<td>85</td>
<td>48</td>
<td>40</td>
<td>78</td>
<td>70</td>
<td>48</td>
<td>35</td>
<td>43</td>
<td>80</td>
</tr>
<tr>
<td>Good</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>7</td>
<td>19</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Fair</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

PO - A

- Excellent: 72%
- Very Good: 20%
- Good: 7%
- Fair: 1%

PO - B

- Excellent: 65%
- Very Good: 27%
- Good: 7%
- Fair: 1%
PO-K

- Excellent: 31%
- Very Good: 65%
- Good: 3%
- Fair: 1%

PO-L

- Excellent: 0%
- Very Good: 39%
- Good: 61%
- Fair: 0%
ME- Software Engineering

<table>
<thead>
<tr>
<th>PO</th>
<th>Program Outcome Description</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
<th>Feed Back %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Independently carry out research/investigation and development work to solve practical problems</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>PO2</td>
<td>Write and present a substantial technical report/document.</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>PO3</td>
<td>Demonstrate a degree of mastery over Software Engineering domain at a level higher than the requirements in the appropriate bachelor programme</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>PO4</td>
<td>Apply software engineering methodologies and software tools to provide solutions for engineering problems with ethical practices</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>95</td>
</tr>
</tbody>
</table>

ME-SOFTWARE ENGINEERING - EXIT FEED BACK - 2018-2020 BATCH

- PO1: 0.95
- PO2: 0.95
- PO3: 0.95
- PO4: 0.95

PSGCT - Student Satisfaction Survey (2019-20)
ME- Computer Science and Engineering

<table>
<thead>
<tr>
<th>Po</th>
<th>Program Outcome Description</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
<th>Feedback %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Independently carry out research/investigation and development work to solve practical problems.</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
<td>83.3</td>
</tr>
<tr>
<td>PO2</td>
<td>Write and present a substantial technical report/document.</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>PO3</td>
<td>Demonstrate a degree of mastery over the Computer Science and Engineering curriculum at a level higher than the requirements in the appropriate bachelor programme.</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>PO4</td>
<td>Apply mathematical foundations, algorithms and computer science principles in modeling and designing computer systems.</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>80</td>
</tr>
</tbody>
</table>
BE Electronic and Communication Engineering

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, Engineering fundamentals, and an engineering specialization to the solution of complex Engineering problems.

- Excellent: 45 (38.14%)
- Very Good: 36 (30.51%)
- Good: 37 (31.36%)
- Fair: 0 (0%)

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- Excellent: 18 (15.25%)
- Very Good: 70 (59.32%)
- Good: 30 (25.42%)
- Fair: 0 (0%)

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>29</td>
<td>24.58%</td>
</tr>
<tr>
<td>Very Good</td>
<td>52</td>
<td>44.08%</td>
</tr>
<tr>
<td>Good</td>
<td>34</td>
<td>28.81%</td>
</tr>
<tr>
<td>Fair</td>
<td>3</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>30</td>
<td>25.42%</td>
</tr>
<tr>
<td>Very Good</td>
<td>36</td>
<td>30.51%</td>
</tr>
<tr>
<td>Good</td>
<td>47</td>
<td>39.83%</td>
</tr>
<tr>
<td>Fair</td>
<td>4</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>41</td>
<td>34.75%</td>
</tr>
<tr>
<td>Very Good</td>
<td>55</td>
<td>46.61%</td>
</tr>
<tr>
<td>Good</td>
<td>20</td>
<td>16.85%</td>
</tr>
<tr>
<td>Fair</td>
<td>2</td>
<td>1.7%</td>
</tr>
</tbody>
</table>
PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

![PO9 Chart]

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>43</td>
<td>36.75%</td>
</tr>
<tr>
<td>Very Good</td>
<td>43</td>
<td>36.75%</td>
</tr>
<tr>
<td>Good</td>
<td>30</td>
<td>25.64%</td>
</tr>
<tr>
<td>Fair</td>
<td>1</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

![PO10 Chart]

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>40</td>
<td>33.90%</td>
</tr>
<tr>
<td>Very Good</td>
<td>48</td>
<td>40.67%</td>
</tr>
<tr>
<td>Good</td>
<td>20</td>
<td>16.95%</td>
</tr>
<tr>
<td>Fair</td>
<td>10</td>
<td>8.47%</td>
</tr>
</tbody>
</table>

PO11. Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

ME VLSI Design

PO1: An ability to independently carry out research investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report/document.
PO3: An ability to demonstrate a degree of mastery in the area of VLSI Design, with the mastery at a level higher than the requirements in the appropriate bachelor program.

PO4: An ability to apply knowledge of VLSI design concepts to solve engineering problems.

PO5: An ability to build competency and skills necessary to create VLSI system with the leading EDA tools and boards used in the semiconductor industry.
PO6: An ability to engage in life-long learning taking into consideration sustainability, societal, ethical and environmental aspects.

ME Communication System

PO1: An ability to independently carry out research investigation and development work to solve practical problems.
PO2: An ability to write and present a substantial technical report/document.

- Excellent: 9 (64.28%)
- Very Good: 5 (35.71%)
- Good: 0 (0%)
- Fair: 0 (0%)

PO3: An ability to demonstrate a degree of mastery in the area of Communication Systems, with the mastery at a level higher than the requirements in the appropriate bachelor program.

- Excellent: 7 (50%)
- Very Good: 7 (50%)
- Good: 0 (0%)
- Fair: 0 (0%)

PO4: An ability to apply knowledge of communication system concepts to solve engineering problems.

- Excellent: 6 (42.86%)
- Very Good: 8 (57.14%)
- Good: 0 (0%)
- Fair: 0 (0%)
PO5: An ability to identify and apply appropriate techniques, resources and EDA tools to model, analyze and test communication systems.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>9</td>
<td>64.28%</td>
</tr>
<tr>
<td>Very Good</td>
<td>5</td>
<td>35.71%</td>
</tr>
<tr>
<td>Good</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

PO6: An ability to engage in life- long learning for the design and development of communication systems taking into consideration sustainability, societal, ethical and environmental aspects.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>9</td>
<td>64.28%</td>
</tr>
<tr>
<td>Very Good</td>
<td>5</td>
<td>35.71%</td>
</tr>
<tr>
<td>Good</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
ME Wireless Communication

PO1: An ability to independently carry out research investigation and development work to solve practical problems.

- **Excellent**: 9 (69.23%)
- **Very Good**: 4 (30.77%)
- **Good**: 0 (0%)
- **Fair**: 0 (0%)

PO2: An ability to write and present a substantial technical report/document.

- **Excellent**: 10 (76.92%)
- **Very Good**: 3 (23.08%)
- **Good**: 0 (0%)
- **Fair**: 0 (0%)

PO3: An ability to demonstrate a degree of mastery in the area of Wireless Communication, with the mastery at a level higher than the requirements in the appropriate bachelor program.

- **Excellent**: 9 (69.23%)
- **Very Good**: 4 (30.77%)
- **Good**: 0 (0%)
- **Fair**: 0 (0%)
PO4: An ability to apply knowledge of wireless communication concepts to solve engineering problems.

PO5: An ability to identify and apply appropriate techniques, resources and EDA tools to model, analyze and test wireless communication systems.

PO6: An ability to engage in life-long learning for the design and development of wireless communication systems taking into consideration sustainability, societal, ethical and environmental aspects.
M.Tech Nano Science and Technology

PO1: An ability to independently carry out research/investigation and development work to solve practical problems

![Pie Chart for PO1]

- **Excellent**: 5 (45.45%)
- **Very Good**: 4 (36.36%)
- **Good**: 2 (18.18%)
- **Fair**: 0 (0%)

PO2: An ability to write and present a substantial technical report/document.

![Pie Chart for PO2]

- **Excellent**: 3 (27.27%)
- **Very Good**: 7 (63.63%)
- **Good**: 1 (9.09%)
- **Fair**: 0 (0%)

PO3: An ability to demonstrate a degree of mastery over nano science and technology.

![Pie Chart for PO3]

- **Excellent**: 0 (27.27%)
- **Very Good**: 7 (63.63%)
- **Good**: 3 (27.27%)
- **Fair**: 1 (9.09%)
PO4: An ability to apply knowledge of computing, mathematics, science and engineering for micro and nanoscale devices.

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>9.09%</td>
<td>36.36%</td>
<td>54.54%</td>
<td>0%</td>
</tr>
</tbody>
</table>

PO5: An ability to analyze the impact of nanostructures on device design engineering solutions for the society and will be aware of contemporary issues.

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Percentage</td>
<td>9.09%</td>
<td>27.27%</td>
<td>54.54%</td>
<td>9.09%</td>
</tr>
</tbody>
</table>

PO6: An ability to use modern engineering, design and analysis tools for micro and nano scale devices especially in Indian context.

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>9.09%</td>
<td>45.45%</td>
<td>45.45%</td>
<td>0%</td>
</tr>
</tbody>
</table>

PSGCT - Student Satisfaction Survey (2019-20)
BE Electrical and Electronics Engineering

Feedback on the attainment of Programme outcomes (PO)

a) The ability to apply of mathematics, Science and Engineering.
76 responses

b) The knowledge to design and conduct experiments, as well as to analyse and interpret data, and prepare reports.
76 responses
c) The ability to function effectively in diverse situations and develop skills needed to work in multi-disciplinary groups.
76 responses

- Excellent: 26.3%
- Very Good: 25%
- Good: 42.1%
- Fair: 26.3%

d) An understanding of their professional and ethical responsibility.
76 responses

- Excellent: 30.3%
- Very Good: 30.3%
- Good: 35.5%
- Fair: 30.3%

e) The ability to communicate effectively, including communication of technical material, both in verbal and written forms.
76 responses

- Excellent: 21.1%
- Very Good: 26.3%
- Good: 44.7%
- Fair: 7.9%
f) The education necessary to understand the impact of engineering solutions in a global, economic, environmental and social context.
76 responses

![Pie Chart](chart1)

- Excellent: 25%
- Very Good: 19.7%
- Good: 32.9%
- Fair: 36.8%

g) An awareness about the need for continued professional growth, life-long learning and adaptation to change.
76 responses

![Pie Chart](chart2)

- Excellent: 26.3%
- Very Good: 48.7%
- Good: 22.4%
- Fair: 25%

h) An understanding of contemporary issues, especially engineering and environmental issues.
76 responses

![Pie Chart](chart3)

- Excellent: 25%
- Very Good: 50%
- Good: 19.7%
- Fair: 25%
i) The capability to use modern engineering tools, such as computer based modeling and simulation software, to analyse and solve electrical and electronics engineering problems.
76 responses

j) An understanding of principles of leadership and project management.
76 responses
k) An understanding of the need for commitment to quality, timeliness and continuous improvement
76 responses

l) The ability to design electrical and electronics systems to meet the required specifications, within realistic constraints
76 responses

Rate the impact of Teaching-learning process in attaining the Programme Outcomes *
BE Electrical and Electronics Engineering (SW)

1. Feedback on the attainment of Programme outcomes (PO)

 a. The ability to apply knowledge of Mathematics, Science and Engineering. (69 responses)

 ![Bar Chart]

 b. The knowledge to design and conduct experiments, as well as to analyse and interpret data, and prepare reports. (69 responses)

 ![Bar Chart]
c. The ability to function effectively in diverse situations and develop skills needed to work in multi-disciplinary groups. (69 responses)

d. An understanding of their professional and ethical responsibility. (69 responses)

e. The ability to communicate effectively, including communication of technical material, both in verbal and written forms. (69 responses)
f. The education necessary to understand the impact of engineering solutions in a global, economic, environmental and social context. (69 responses)

g. An awareness about the need for continued professional growth, life long learning and adaption to change. (69 responses)

h. An understanding of contemporary issues, especially engineering and environmental issues (69 responses)
i. The capability to use modern engineering tools, such as computer based modeling and simulation software, to analyse and solve electrical and electronics engineering problems. (69 responses)

![Bar chart showing responses for i.]

j. An understanding of principles of leadership and project management. (69 responses)

![Bar chart showing responses for j.]

PSGCT - Student Satisfaction Survey (2019-20)
k. An understanding of the need for commitment to quality, timeliness and continuous improvement. (69 responses)

1. The ability to design electrical and electronics systems to meet the required specifications, within realistic constraints. (69 responses)
2) Rate the impact of Teaching-learning process in attaining the Programme Outcomes (69 responses)

3. Grade the quality of the programme on a scale of one (least) to five (most) *(69 responses)

ME-Applied Electronics

PO1: An ability to independently carry out research /investigation and development work to solve practical problems
PO2: An ability to write and present a substantial technical report/document

PO3: Students should be able to demonstrate a degree of mastery over the area of Applied Electronics.

PO4: An ability to function as a practitioner in multidisciplinary environment maintaining good professional ethics with a desire for life-long learning.
ME-Embedded and real-Time systems

Attainment of Programme Outcomes based on Exit Feedback

PO Attainment based on Exit Feedback

<table>
<thead>
<tr>
<th>PO</th>
<th>Level of Attainment (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>84.29</td>
</tr>
<tr>
<td>PO2</td>
<td>87.14</td>
</tr>
<tr>
<td>PO3</td>
<td>85.71</td>
</tr>
<tr>
<td>PO4</td>
<td>84.29</td>
</tr>
</tbody>
</table>
DEPARTMENT OF FASHION TECHNOLOGY

B.Tech Fashion Technology

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% attained - EXIT</td>
<td>82.5</td>
<td>80</td>
<td>82</td>
<td>84.5</td>
<td>83.5</td>
<td>8</td>
<td>80.5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>82.5</td>
<td>86</td>
<td>85</td>
<td>83</td>
</tr>
</tbody>
</table>

PO/PSO Attainment % - EXIT Survey
DEPARTMENT OF INSTRUMENTATION AND CONTROL SYSTEMS

ENGINEERING

BE Instrumentation and Control Engineering

Feedback on the attainment of Programme Outcomes (PO)

PO1 Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

![PO1 Diagram]

PO2 Problem analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principle of mathematics, natural sciences, and engineering sciences

![PO2 Diagram]
PO3 Design/Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

PO4 Conduct investigations of complex problems: Design and conduct experiments as well as to analyze and interpret data professionally
PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and activities with an understanding of the limitations

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PSO1: Design and analyze measurement systems.

<table>
<thead>
<tr>
<th>PO</th>
<th>2016-2020 PO Attainment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Series1 85.15</td>
</tr>
<tr>
<td>PO2</td>
<td>85.45</td>
</tr>
<tr>
<td>PO3</td>
<td>83.64</td>
</tr>
<tr>
<td>PO4</td>
<td>83.94</td>
</tr>
<tr>
<td>PO5</td>
<td>85.15</td>
</tr>
<tr>
<td>PO6</td>
<td>83.94</td>
</tr>
<tr>
<td>PO7</td>
<td>86.67</td>
</tr>
<tr>
<td>PO8</td>
<td>86.67</td>
</tr>
<tr>
<td>PO9</td>
<td>86.67</td>
</tr>
<tr>
<td>PO10</td>
<td>85.76</td>
</tr>
<tr>
<td>PO11</td>
<td>84.85</td>
</tr>
<tr>
<td>PO12</td>
<td>86.97</td>
</tr>
</tbody>
</table>

PSO2: Practice and contribute to control and automation field.

<table>
<thead>
<tr>
<th>PO</th>
<th>2016-2020 PO Attainment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Series1 85.45</td>
</tr>
<tr>
<td>PO2</td>
<td>83.94</td>
</tr>
<tr>
<td>PO3</td>
<td>85.15</td>
</tr>
<tr>
<td>PO4</td>
<td>83.94</td>
</tr>
<tr>
<td>PO5</td>
<td>86.67</td>
</tr>
<tr>
<td>PO6</td>
<td>86.67</td>
</tr>
<tr>
<td>PO7</td>
<td>86.67</td>
</tr>
<tr>
<td>PO8</td>
<td>85.76</td>
</tr>
<tr>
<td>PO9</td>
<td>84.85</td>
</tr>
<tr>
<td>PO10</td>
<td>86.97</td>
</tr>
</tbody>
</table>
PSO3: Apply software skills for measurement and control applications

Per centage of attainment:

- Excellent (5) 36%
- Very good (4) 20%
- Good (3) 42%
- Fair (2) 2%

2016 - 2020, PSO Attainment - Exit Survey

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series1</td>
<td>84.85</td>
<td>86.06</td>
<td>82.73</td>
</tr>
</tbody>
</table>
Grade the quality of the programme on a scale of one (least) to five (most)

65 responses

- 5: 49.2%
- 4: 40%
- 3: 6.2%
- 2: 3.1%
- 1: 1.5%

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

65 responses

- Excellent (5): 50.8%
- Very Good (4): 41.5%
- Good (3): 6.2%
- Fair (2): 1.5%
Courses that have STRONG relationship with the programme

![Bar chart showing number of students for various courses.](chart1)

Course(s) which can be included in the curriculum:

![Bar chart showing number of responses for various courses.](chart2)
ME Control Systems

Feedback on the attainment of Programme Outcomes (PO)

PO1: An ability to independently carry out research/investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report/document.
PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4: An ability to work in teams and apply interpersonal skills to solve multidisciplinary problems.
Rate the Impact of teaching Learning process in attaining the Programme Outcomes:

Grade the Quality of the Programme on a scale of one (Least) to five (Most)

Identify Strengths of the Programme
Identify Weakness of the Programme

List of courses that have weak relationship with the Programme
List of courses that have Strong relationship with the Programme
DEPARTMENT OF INFORMATION TECHNOLOGY

B.Tech Information Technology

M.Tech Information Technology
ME Biometrics and Cyber Security

![Bar Chart](image)

Programme Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>% of Excellent</th>
<th>% of Very Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MCA

1. Rate the impact of Teaching-learning process in attaining the Programme Outcomes

2. Grade the quality of the programme on a scale of one (least) to five (most)
3. Programme Outcome Feedback

An ability to identify, formulate problem definition for real world problems, analyze the literature and provide software solutions.

![Pie chart showing feedback]

An ability to design, implement, and evaluate sustainable computational solutions in the form of a system, process, component, or program for various complex problems as per needs and specifications.

![Pie chart showing feedback]
An ability to assimilate and use state of the art computing technologies, tools and techniques necessary for computing practices.

An ability to use research based knowledge including design and development of algorithms, analysis and interpretation of data and synthesis of information to provide valid conclusion.
An ability to apply management principles to manage projects and develop soft skills, and practice professional ethics in multidisciplinary environments

An ability to communicate effectively in both verbal and written form
An ability to adapt standardized software engineering practices to succeed

An ability to engage in self learning for continual development as a computing professional and analyze the impact of computing on individuals, organizations, research community and the society at large
Ability to service and excel in fulfilling the modern day demands with their knowledge and skills
DEPARTMENT OF MECHANICAL ENGINEERING

BE Mechanical Engineering

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

73 responses

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

73 responses
Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

73 responses

Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

73 responses
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.

73 responses

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

73 responses
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

73 responses

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

73 responses
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

73 responses

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

73 responses
Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

73 responses

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

73 responses
An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.

73 responses

An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.

73 responses
An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

73 responses

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

73 responses
B Mechanical Engineering G2

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

68 responses

![Pie chart for engineering knowledge]

- Excellent: 38.2%
- Very Good: 23.5%
- Good: 27.9%
- Fair: 10.3%

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

68 responses

![Pie chart for problem analysis]

- Excellent: 36.8%
- Very Good: 25%
- Good: 26.5%
- Fair: 11.8%
Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

68 responses

Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

68 responses
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.

68 responses

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

68 responses
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

68 responses

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

68 responses
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

68 responses

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

68 responses
Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

68 responses

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

68 responses
An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.
68 responses

An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.
68 responses
An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

68 responses

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

68 responses
Grade the quality of the programme on a scale of one to five

68 responses

BE Mechanical Engineering SW

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

72 responses
Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

72 responses

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

72 responses
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

72 responses

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.

72 responses
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

72 responses

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

72 responses
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

72 responses

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

72 responses
Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

72 responses

![Pie chart showing the distribution of responses]

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

72 responses

![Pie chart showing the distribution of responses]
Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

72 responses

An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.

72 responses
An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.

72 responses

An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

72 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes

72 responses

Grade the quality of the programme on a scale of one to five

72 responses
ME Computer Integrated Manufacturing

An ability to independently carry out research investigation and development work to solve practical problems

11 responses

![Pie chart showing distribution of responses.](image)

An ability to write and present a substantial technical report/document

11 responses

![Pie chart showing distribution of responses.](image)
Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

11 responses

An ability to apply knowledge of manufacturing systems and their integration with various functions

11 responses
An ability to identify, select and apply appropriate tools and techniques to model and analyze the manufacturing resources

11 responses

An ability to engage in life-long learning for solving manufacturing process design problems taking into consideration sustainability, societal, ethical and environmental aspects.

11 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
11 responses

Grade the quality of the programme on a scale of one to five
11 responses
ME Engineering Design

An ability to independently carry out research investigation and development work to solve practical problems
17 responses

- Excellent: 29.4%
- Very Good: 52.9%
- Good: 11.8%

An ability to write and present a substantial technical report/document
17 responses

- Excellent: 29.4%
- Very Good: 58.8%
- Good: 11.8%
Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

17 responses

An ability to apply knowledge of design concepts to solve engineering problems

17 responses
An ability to identify, select and apply appropriate techniques, resources and design tools to model and analyze engineering design problems

17 responses

An ability to engage in life-long learning for solving design problems taking into consideration sustainability, societal, ethical and environmental aspects

17 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
17 responses

Grade the quality of the programme on a scale of one to five
17 responses
Be able to interpret and analyze data to conduct investigation of management problems using research based knowledge and various industrial engineering principles to arrive at valid conclusions.

2 responses

Be able to find safe and cost effective solutions in the development of systems taking into consideration quality, sustainability, societal, environmental and public health aspects.

2 responses
Be able to function effectively as an individual and as a team member in executing and managing projects pertaining to engineering management as well as in multi-disciplinary environment.

2 responses

Be able to identify, select and apply appropriate techniques, resources and industrial engineering tools to model and analyze industrial engineering problems.

2 responses
Be able to uphold professional ethics and social responsibilities consistent with their roles as industrial engineers.

2 responses

Be able to communicate effectively on complex system related problems and disseminate the results by oral and written communication.

2 responses
Be able to undertake research systematically in the thrust areas of industrial engineering and understand the impact of such solutions in the development of society.

2 responses

Be able to engage in life-long learning so as to adapt oneself to the change in needs of the society and have propensity for continuous learning.

2 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
2 responses

Grade the quality of the programme on a scale of one to five
2 responses
An ability to independently carry out research/ investigation and development work to solve practical problems
9 responses

An ability to write and present a substantial technical report/document
9 responses
Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program.

9 responses

Students should be able to find safe, cost effective and environment-friendly solutions for real-time industrial engineering problems

9 responses
Be able to identify, select and apply appropriate techniques, resources and industrial engineering tools to model and analyze industrial engineering problems considering quality and sustainability
9 responses

Possess an open mind for continuous learning and engage in life long learning
9 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes

9 responses

Grade the quality of the programme on a scale of one to five

9 responses
ME Energy Engineering

An ability to independently carry out research investigation and development work to solve practical problems
13 responses

An ability to write and present a substantial technical report/document
13 responses
Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

13 responses

An ability to apply knowledge of energy conversion and conservation techniques to solve energy engineering problems

13 responses
An ability to identify, select and apply appropriate techniques, resources and tools to model and analyze energy related problems

13 responses

An ability to engage in life- long learning for solving problems taking into consideration sustainability, societal, ethical and environmental aspects

13 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
13 responses

Grade the quality of the programme on a scale of one to five
13 responses
ME Lean Manufacturing

An ability to independently carry out research/investigation and development work to solve practical problems
8 responses

- Excellent: 62.5%
- Very Good: 37.5%

An ability to write and present a substantial technical report/document
8 responses

- Excellent: 87.5%
- Very Good: 12.5%
Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

8 responses

An ability to acquire in-depth knowledge of lean manufacturing concepts and application of the same to solve complex production and industrial engineering problems

8 responses
An ability to identify, select and apply appropriate techniques, resources and lean tools to model and analyze lean implementation issues

8 responses

An ability to engage in life-long learning for solving problems taking into consideration sustainability, societal, ethical and environmental aspects

8 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
8 responses

Grade the quality of the programme on a scale of one to five
8 responses
Count of PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and metallurgical engineering to the

Count of PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and

Count of PO2: Identify, formulate, review research literature, and analyze complex metallurgical engineering problems

Count of PO2: Identify, formulate, review research literature, and analyze complex metallurgical engineering problems
Count of PO3: Design solutions for complex metallurgical engineering problems and design system components or

Count of PO4: Use research-based knowledge and research methods including design of experiments, analysis and
Count of PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools

Count of PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural
Count of PO7: Understand the impact of the metallurgical engineering solutions in societal and environmental contexts.

Count of PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
Count of PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary

Count of PO9: Function effectively as an individual, and as a member or leader in diverse teams,

Count of PO10: Communicate effectively on complex metallurgical engineering activities with the metallurgical

Count of PO10: Communicate effectively on complex metallurgical engineering activities with the
Count of PO11: Demonstrate knowledge and understanding of the metallurgical engineering and management principles and

Count of PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long

Count of PO11: Demonstrate knowledge and understanding of the metallurgical engineering and

Count of PO12: Recognize the need for, and have the preparation and ability to engage in
Count of PSO1: Apply metallurgical engineering principles to provide ecological and cost-effective solutions for metal

Count of PSO2: Evaluate, modify existing materials and processes and to develop new materials and processes that
Count of PSO3: Design and develop an efficient methodology for specific engineering applications to ensure reliable and
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. 69 responses

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions, natural sciences, and engineering sciences. 69 responses
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet technical, societal, and environmental considerations. 69 responses

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis of the information to provide valid conclusions. 69 responses

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and activities with an understanding of the limitations. 69 responses
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues as relevant to the professional engineering practice. 69 responses

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate knowledge of, and need for sustainable development. 69 responses

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. 69 responses
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
69 responses

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, su...ntations, and give and receive clear instructions.
69 responses
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply to projects and in multidisciplinary environments.
69 responses

![Pie chart showing distribution of responses for project management and finance.](chart1.png)

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
69 responses

![Pie chart showing distribution of responses for life-long learning.](chart2.png)
1. Graduates will demonstrate the ability to improve a production process or system that meets desired specifications and requirements.
69 responses

2. Graduates will demonstrate their ability to select a manufacturing process or a sequence of manufacturing processes to manufacture a given component according to the design specifications.
69 responses

3. Graduates will be familiar with engineering software and equipment as practiced in manufacturing industry to formulate and solve real-world problems by working with multidisciplinary teams.
69 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
69 responses

Grade the quality of the programme on a scale of one (least) to five (most)
69 responses
1. What is your overall satisfaction with your education at PSG Tech?
69 responses

2. Placement initiatives/preparations/ activities /results.
69 responses
3. Programme curriculum.
69 responses

4. Degree of academic challenge.
69 responses

5. Development of soft skills.
69 responses
6. Faculty’s concern about students’ learning and development.
69 responses

7. Effectiveness of the teaching learning process in the department.
69 responses

8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.
69 responses
9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
69 responses

10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
69 responses

11. Library Facilities (Books, Online journals, E books, Videos etc.)
69 responses
12. Co-curricular activities (Conference, Association, etc)
69 responses

13. Internet Facility
69 responses

14. Financial support opportunities (Scholarship)
69 responses
15. Would you recommend the programme at PSG Tech to a relative/friend?
69 responses

- Yes: 63.8%
- Maybe: 33.3%
- No: 3.3%

16. How do you rate this survey?
69 responses

- Excellent: 29%
- Good: 60.9%
- Satisfactory: 10.1%

17. Where do you see yourself 10 years from now?
69 responses

- Core Engineering Career: 47.8%
- Entrepreneur: 36.2%
- Teaching: 8.7%
- Research: 8.7%
- Information Tech (Software Career): 3.3%
BE Production Engineering (Sandwich)

Assessment of Program Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
 60 responses

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions, natural sciences, and engineering sciences.
 60 responses
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet technical, societal, and environmental considerations. 60 responses

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis of the information to provide valid conclusions. 60 responses

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and activities with an understanding of the limitations. 60 responses
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues as relevant to the professional engineering practice.
60 responses

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate knowledge of, and need for sustainable development.
60 responses

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
60 responses
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

60 responses

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, situations, and give and receive clear instructions.

60 responses
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply them to projects and in multidisciplinary environments.
60 responses

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
60 responses
Assessment of Program Specific Outcomes

1. Graduates will demonstrate the ability to improve a production process or system that meets desired specifications and requirements.
 60 responses

 - Excellent: 43.3%
 - Good: 50%
 - Satisfactory: 6.7%

2. Graduates will demonstrate their ability to select a manufacturing process or a sequence of manufacturing processes to manufacture a given component according to the design specifications.
 60 responses

 - Excellent: 45%
 - Good: 50%
 - Satisfactory: 5%

3. Graduates will be familiar with engineering software and equipment as practiced in manufacturing industry to formulate and solve real-world-friendly by working with multidisciplinary teams.
 60 responses

 - Excellent: 45%
 - Good: 48.3%
 - Satisfactory: 6.7%
Feedback on Teaching- Learning Process and the Programme

Rate the impact of Teaching-learning process in attaining the Programme Outcomes
60 responses

- Excellent: 51.7%
- Good: 36.7%
- Satisfactory: 11.7%

Grade the quality of the programme on a scale of one (least) to five (most)
60 responses

- 5: 48.3%
- 4: 16.7%
- 3: 30%
Overall Assessment of Student Experience

1. What is your overall satisfaction with your education at PSG Tech?
 60 responses

2. Placement initiatives/preparations/ activities /results.
 60 responses

3. Programme curriculum.
 60 responses
4. Degree of academic challenge.
60 responses

5. Development of soft skills.
60 responses

6. Faculty’s concern about students’ learning and development.
60 responses
7. Effectiveness of the teaching learning process in the department.
60 responses

8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.
60 responses

9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
60 responses
10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
60 responses

11. Library Facilities (Books, Online journals, E books, Videos etc.)
60 responses

12. Co-curricular activities (Conference, Association, etc)
60 responses
13. Internet Facility
60 responses

14. Financial support opportunities (Scholarship)
60 responses

15. Would you recommend the programme at PSG Tech to a relative/friend?
60 responses
16. How do you rate this survey?
60 responses

17. Where do you see yourself 10 years from now?
60 responses
1. The postgraduates will have the ability to independently carry out research / investigation and development work to solve practical problems.
13 responses

2. The postgraduates will have the ability to write and present a substantial technical report / document.
13 responses
3. The postgraduates will have the ability to demonstrate a degree of mastery over the area as per the specialization of the programme.

13 responses

4. The postgraduates will have the ability to use modern equipment and problem solving tools for improving manufacturing systems and processes from technical, financial and social perspectives.

13 responses

5. The postgraduates will have the ability to pursue higher studies / pursue their careers with OEMs / become entrepreneurs.

13 responses
Feedback on Teaching- Learning Process and the Programme

Rate the impact of Teaching-learning process in attaining the Programme Outcomes
13 responses

- Excellent: 53.8%
- Good: 38.5%
- Satisfactory: 7.7%

Grade the quality of the programme on a scale of one (least) to five(most)
13 responses

- 5: 38.5%
- 4: 15.4%
- 3: 7.7%
- 2: 38.5%
Overall Assessment of Student Experience

1. What is your overall satisfaction with your education at PSG Tech?
 13 responses

 - Excellent: 69.2%
 - Good: 23.1%
 - Satisfactory: 7.7%

2. Placement initiatives/preparations/activities/results.
 13 responses

 - Excellent: 69.2%
 - Good: 23.1%
 - Satisfactory: 7.7%

3. Programme curriculum.
 13 responses

 - Excellent: 59.8%
 - Good: 38.5%
 - Satisfactory: 7.7%
5. Development of soft skills.
13 responses

6. Faculty’s concern about students’ learning and development.
13 responses

7. Effectiveness of the teaching learning process in the department.
13 responses
8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.
13 responses

9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
13 responses

10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
13 responses
11. Library Facilities (Books, Online journals, E books, Videos etc.)
13 responses

12. Co-curricular activities (Conference, Association, etc)
13 responses
13. Internet Facility
13 responses

14. Financial support opportunities (Scholarship)
13 responses

15. Would you recommend the programme at PSG Tech to a relative/friend?
13 responses
16. How do you rate this survey?
13 responses

17. Where do you see yourself 10 years from now?
13 responses
ME Product Design and Commerce

Assessment of Program Outcomes

1. The postgraduates will have the ability to independently carry out research / investigation and development work to solve practical problems.
 7 responses

2. The postgraduates will have the ability to write and present a substantial technical report / document.
 7 responses

170 | P a g e
3. The postgraduates will have the ability to demonstrate a degree of mastery over the area as per the specialization of the program.
7 responses

4. The postgraduates will have the ability to assess the feasibility of developing an innovative product from technical, financial and social perspectives and product development with the help of case studies.
7 responses
5. The postgraduates will have the ability to use modern software used by OEMs and develop workflow to work in concurrent engineering environment... expedite product development process as a team.
7 responses

6. The postgraduates will have the ability to pursue higher studies / pursue their careers with OEMs / become entrepreneurs.
7 responses

Feedback on Teaching- Learning Process and the Programme

Rate the impact of Teaching-learning process in attaining the Programme Outcomes
7 responses
Overall Assessment of Student Experience

1. What is your overall satisfaction with your education at PSG Tech?
 7 responses
 - Excellent: 100%

2. Placement initiatives/preparations/ activities /results.
 7 responses
 - Excellent: 42.9%
 - Good: 14.3%
 - Satisfactory: 42.9%
3. Programme curriculum.
7 responses

4. Degree of academic challenge.
7 responses

5. Development of soft skills.
7 responses
6. Faculty’s concern about students’ learning and development.
 7 responses

7. Effectiveness of the teaching learning process in the department.
 7 responses

8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical
course content.
 7 responses
9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
7 responses

10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
7 responses

11. Library Facilities (Books, Online journals, E books, Videos etc.)
7 responses
12. Co-curricular activities (Conference, Association, etc)
7 responses

13. Internet Facility
7 responses

14. Financial support opportunities (Scholarship)
7 responses
15. Would you recommend the programme at PSG Tech to a relative/friend?
7 responses

16. How do you rate this survey?
7 responses

17. Where do you see yourself 10 years from now?
7 responses
ME Virtual Prototyping and Digital Manufacturing

Assessment of Program Outcomes

1. The postgraduates will have the ability to independently carry out research / investigation and development work to solve practical problems.
 7 responses

2. The postgraduates will have the ability to write and present a substantial technical report / document.
 7 responses
3. The postgraduates will have the ability to demonstrate a degree of mastery over the area as per the specialization of the program.

4. The postgraduates will have the ability to create virtual environments / digital mock up for immersive visualisation of data related to product...knowledge on computer graphics and virtual reality.

5. The postgraduates will have the ability to pursue higher studies / pursue their careers with OEMs / become entrepreneurs.
Feedback on Teaching- Learning Process and the Programme

Rate the impact of Teaching-learning process in attaining the Programme Outcomes
7 responses

- Excellent: 42.9%
- Good: 14.3%
- Satisfactory: 42.9%

Grade the quality of the programme on a scale of one (least) to five(most)
7 responses

- 5: 57.1%
- 4: 14.3%
- 3: 14.3%
- 2: 28.6%
- 1:
Overall Assessment of Student Experience

1. What is your overall satisfaction with your education at PSG Tech?
 7 responses
 - Excellent: 71.4%
 - Good: 28.6%

2. Placement initiatives/preparations/ activities /results.
 7 responses
 - Excellent: 57.1%
 - Good: 28.6%
 - Satisfactory: 14.3%

3. Programme curriculum.
 7 responses
 - Excellent: 57.1%
 - Good: 28.6%
 - Satisfactory: 14.3%
4. Degree of academic challenge.
7 responses

5. Development of soft skills.
7 responses

6. Faculty’s concern about students’ learning and development.
7 responses
7. Effectiveness of the teaching learning process in the department.
7 responses

8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.
7 responses

9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
7 responses
10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
7 responses

11. Library Facilities (Books, Online journals, E books, Videos etc.)
7 responses

12. Co-curricular activities (Conference, Association, etc)
7 responses
13. Internet Facility
7 responses

14. Financial support opportunities (Scholarship)
7 responses

15. Would you recommend the programme at PSG Tech to a relative/friend?
7 responses
16. How do you rate this survey?
7 responses

17. Where do you see yourself 10 years from now?
7 responses
ME Production Engineering (PT)

Assessment of Program Outcomes

1. Postgraduates will apply the knowledge acquired in mathematics, science, and engineering to understand and solve the problems related to manufacturing.
 2 responses

2. Postgraduates will use modern equipment and technology that can be applied to improve manufacturing systems and processes with industry participation.
 2 responses
3. Postgraduates will identify the need of automation and demonstrate ability to automate manufacturing systems.
2 responses

4. Postgraduates will be encouraged to have out of box thinking in continuous improvement of manufacturing processes with integration of design systems.
2 responses

5. Postgraduates will be motivated to become entrepreneurs.
2 responses
6. Postgraduates will be capable of developing new manufacturing systems and assessing the feasibility from technical, financial and social perspectives.
2 responses

7. Postgraduates will be mentored in their areas of interest and will demonstrate abilities to communicate their research outcomes.
2 responses

8. Postgraduates can pursue their careers with manufacturing industries in supporting manufacturing activities and in the area of Research and Development.
2 responses
Feedback on Teaching- Learning Process and the Programme

Rate the impact of Teaching-learning process in attaining the Programme Outcomes
2 responses

Grade the quality of the programme on a scale of one (least) to five(most)
2 responses
Overall Assessment of Student Experience

1. What is your overall satisfaction with your education at PSG Tech?
 2 responses
 - Excellent: 100%

2. Placement initiatives/preparations/ activities /results.
 2 responses
 - Excellent: 50%
 - Good: 50%

3. Programme curriculum.
 2 responses
 - Excellent: 50%
 - Good: 50%
4. Degree of academic challenge.
2 responses

5. Development of soft skills.
2 responses

6. Faculty’s concern about students’ learning and development.
2 responses
7. Effectiveness of the teaching learning process in the department.
2 responses

8. The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.
2 responses

9. The knowledge gained and the skills acquired have made you confident to become an entrepreneur.
2 responses
10. The knowledge gained and the skills acquired have made you confident to pursue higher studies/research.
2 responses

11. Library Facilities (Books, Online journals, E books, Videos etc.)
2 responses

12. Co-curricular activities (Conference, Association, etc)
2 responses
13. Internet Facility
2 responses

14. Financial support opportunities (Scholarship)
2 responses

15. Would you recommend the programme at PSG Tech to a relative/friend?
2 responses
16. How do you rate this survey?
2 responses

17. Where do you see yourself 10 years from now?
2 responses
MANAGEMENT SCIENCES

MBA and PGDM programs

Scale : 1- Excellent 2- Very Good 3- Average 4- Need improvement 5- Poor

1. The facilities in the classrooms were

[Bar chart showing distribution of responses]

2. The range of subjects taught, in your view was

[Bar chart showing distribution of responses]

3. If you were to rate the IM faculty for their teaching, how would you rate them overall?

[Bar chart showing distribution of responses]
14a. How useful did you find the following?

- Moodle
- Supplied textbooks
- Industry/CEO interaction
- Placement process/system
- Powerpoint/teaching aids supplied

14b. Referring to the lecture delivery by faculty, how would you rate overall the following?

- Quality of delivery
- Class Discipline
- Internal assignments
- Innovativeness in teaching

15. How would you rate your own growth in these key areas?

- Self-confidence
- Social skills
- Emotional maturity
- Teamwork
11.a How useful do you think the final project is for the final semester? Please reply if you had a final project.

159 responses

- VERY USEFUL: 32.1%
- USEFUL: 17.6%
- LESS USEFUL: 16.4%
- NO USE AT ALL: 28.9%
- I DID NOT HAVE A FINAL PROJECT: 16.4%
1. Feedback on the attainment of Programme outcomes (PO). Select appropriate level in which POs are met.

PO1

Count of PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization...

- Very Good: 44.6%
- Good: 26.8%
- Excellent: 23.2%
- Fair: 5.4%

PO2

Count of PO2: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiate...

- Very Good: 53.8%
- Good: 23.2%
- Excellent: 16.1%
- Fair: 7.1%
Count of PO3: Design solutions for complex engineering problems and design system components or processes that...

- Fair: 5.4%
- Good: 21.4%
- Excellent: 25.0%
- Very Good: 48.2%

Count of PO4: Conduct investigations of complex problems using modern computational concepts and tools

- Fair: 8.9%
- Excellent: 26.8%
- Good: 26.8%
- Very Good: 37.5%
Count of PO5: Create, select, and apply appropriate techniques, resources, and modern

- Fair: 5.4%
- Excellent: 32.1%
- Very Good: 32.1%
- Good: 30.4%

Count of PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural...

- Fair: 5.4%
- Good: 25.0%
- Excellent: 25.0%
- Very Good: 44.6%
Count of PO7: Understand the impact of the professional engineering solutions in societal and environmental contexts,…

- Excellent: 26.8%
- Very Good: 44.6%
- Good: 23.2%
- Fair: 5.4%

Count of PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engi…

- Excellent: 30.4%
- Very Good: 37.5%
- Good: 26.8%
- Fair: 5.4%
Count of PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- Excellent: 26.8%
- Good: 26.6%
- Very Good: 41.1%
- Fair: 5.4%

Count of PO10: Communicate effectively on complex engineering activities with the engineering community and with non-engineering communities.

- Excellent: 18.8%
- Good: 27.1%
- Very Good: 47.9%
- Fair: 6.3%
Count of PO11: Demonstrate knowledge and understanding of engineering and management principles and apply these to...

- Very Good: 47.9%
- Excellent: 27.1%
- Good: 18.8%
- Fair: 6.3%

Count of PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long...

- Very Good: 52.1%
- Excellent: 18.8%
- Good: 25.0%
- Fair: 4.2%
PSO1

Count of PSO1: Design and develop robotic and automation systems for industry and service applications.

- Very Good: 37.5%
- Good: 22.9%
- Excellent: 29.2%
- Fair: 10.4%

PSO2

Count of PSO2: Explore the relationship between robots and society, and the implications for the economy, human health, ...

- Very Good: 43.8%
- Good: 20.8%
- Excellent: 25.0%
- Fair: 10.4%
Rate the impact of Teaching Learning Process in attaining the Programme Outcomes.

Count of Rate the impact of teaching learning process in attaining the Programme Outcomes.

- Very Good: 44.6%
- Good: 25.0%
- Excellent: 19.6%
- Fair: 5.4%
- Good, Fair: 3.6%

Grade the Quality of the Programme (1-lowest grade, 5-highest grade)
Programme Outcomes

<table>
<thead>
<tr>
<th>Programme Outcomes</th>
<th>Excellent (100%)</th>
<th>Very Good (75%)</th>
<th>Good (50%)</th>
<th>Fair (25%)</th>
<th>Student strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Apply knowledge of science, mathematics and engineering to troubleshoot and solve textile and allied industry problems</td>
<td>36</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>b. Identify the research gaps, review literature and formulate research scheme in textiles in order to arrive at substantiated conclusion</td>
<td>28</td>
<td>25</td>
<td>6</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>c. Design system components, processes and product to meet the desired needs with appropriate practical considerations</td>
<td>33</td>
<td>21</td>
<td>6</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>d. Plan and conduct experiments, characterize, analyze and interpret data statistically for innovative and optimal solutions and product developments</td>
<td>36</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>e. Create, select, and apply techniques, resources, and modern engineering and IT tools for engineering activities</td>
<td>31</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>f. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues with a commitment to professional ethics and responsibilities</td>
<td>31</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>g. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development</td>
<td>29</td>
<td>26</td>
<td>5</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>h. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings</td>
<td>35</td>
<td>18</td>
<td>7</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>i. Communicate effectively on complex engineering activities with the engineering community and with society at large</td>
<td>42</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>i. Demonstrate knowledge and understanding of the engineering and management principles, finance, branding and marketing principles and apply these to manage projects in multidisciplinary environments</td>
<td>34</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>
M.Tech Textile Technology

Programme Outcomes

<table>
<thead>
<tr>
<th>Programme Outcomes</th>
<th>Excellent (100%)</th>
<th>Very Good (75%)</th>
<th>Good (50%)</th>
<th>Fair (25%)</th>
<th>Student strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Apply knowledge of science, mathematics and engineering to troubleshoot and solve textile and allied industry problems</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>b. Identify the research gaps, review literature and formulate research scheme in textiles in order to arrive at substantiated conclusion</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>c. Design system components, processes and product to meet the desired needs with appropriate practical considerations</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>d. Plan and conduct experiments, characterize, analyze and interpret data statistically for innovative and optimal solutions and product developments</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>e. Create, select, and apply techniques, resources, and modern engineering and IT tools for engineering activities</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>f. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues with a commitment to professional ethics and responsibilities</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>g. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>h. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>i. Communicate effectively on complex engineering activities with the engineering community and with society at large</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>i. Demonstrate knowledge and understanding of the engineering and management principles, finance, branding and marketing principles and apply these to manage projects in multidisciplinary environments</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>k. Recognize the need for, and have the base and ability to engage in independent and life-long learning in the broadest context of technological change</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
M.Sc Applied Mathematics

Name of the programme
21 responses

100%

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCES

Feedback on the attainment of Programme Outcomes (PO)

To provide a thorough knowledge in various field of Applied mathematics
21 responses

52.4%

38.1%
In depth knowledge in basics of computer science
21 responses

Applying the methods and tools of mathematics to solve the problems in Science and Engineering.
21 responses
An Ability to build and administrate the Mathematical models to solve the problems arises in various field of Applied Mathematics.

21 responses

An ability to understand and solve emerging research problems

21 responses
Develop software skills to implement research projects
21 responses

- Excellent: 57.1%
- Very Good: 9.5%
- Good: 28.6%
- Fair: 9.5%

Prepare students to pursue their research in Top-Notch students.
21 responses

- Excellent: 57.1%
- Very Good: 9.5%
- Good: 23.8%
- Fair: 9.5%
Prepare students to gain technical competency and managerial skills to tackle the growing and ever widening requirements of the software industry across and R&D sectors of the industry.

21 responses

Develop soft skills in practicing professional ethics

21 responses
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

21 responses

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

21 responses
Grade the quality of the programme on a scale of one to five
21 responses

B.Sc Computer Systems and Design

Name of the programme
57 responses
Feedback on the attainment of Programme Outcomes (PO)

An ability to apply knowledge of mathematics, computing and management principles appropriately to model the software applications
57 responses

An ability to design and conduct experiments, as well as to analyze and interpret data.
57 responses
An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, healthy and safety, manufacturability and sustainability.
57 responses

An ability to acquire required programming skills, formulate and solve practical problems.
57 responses
An understanding of professional and ethical responsibility.

57 responses

- Excellent: 49.1%
- Very Good: 31.6%
- Good: 15.8%
- Fair: 17.5%

An ability to communicate effectively.

57 responses

- Excellent: 43.9%
- Very Good: 38.6%
- Good: 15.8%
- Fair: 15.7%
An ability to function on multidisciplinary teams.

57 responses

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

57 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes

57 responses

Grade the quality of the programme on a scale of one to five

57 responses
M.Sc Data Science

Name of the programme
12 responses

Feedback on the attainment of Programme Outcomes (PO)

Ability to apply knowledge of basic sciences, mathematics, probability and statistics to computer science and solve problems.
12 responses

- Excellent: 41.7%
- Very Good: 25%
- Good: 33.3%
Ability to model, analyse, design, visualize and realize physical systems or processes of increasing size and complexity

12 responses

An ability to understand, analyze and design efficient algorithms

12 responses
Development of soft skills and practicing professional ethics
12 responses

- Excellent: 50%
- Very Good: 25%
- Good: 16.7%
- Fair: 16.7%

Develop and implement data analysis strategies based on theoretical principles, and detailed knowledge of the underlying data.
12 responses

- Excellent: 75%
- Very Good: 16.7%
- Good: 8.3%
- Fair: 8.3%
An ability to analyze very large data sets in the context of real world problems and interpret results using data analytics.

12 responses

An ability to understand the interdisciplinary nature of data, information and communications.

12 responses
An ability to understand research methods used to collect and analyze data for decision making.

12 responses

![Pie chart showing percentages for different categories: Excellent, Very Good, Good, Fair.](chart)

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

12 responses

![Pie chart showing percentages for different categories: Excellent, Very Good, Good, Fair.](chart)
Rate the impact of Teaching-learning process in attaining the Programme Outcomes
12 responses

Grade the quality of the programme on a scale of one to five
12 responses
M.Sc Software Systems

Feedback on the attainment of Programme Outcomes (PO)

Ability to apply knowledge of basic sciences, mathematics, probability and statistics to computer science and solve problems.

13 responses
Ability to learn the fundamentals of computing systems, design and functionality of the hardware components and their underlying execution.

13 responses

- Excellent: 61.5%
- Very Good: 38.5%
- Good: 7.7%

Ability to model, analyse, design, visualize and realize physical systems or processes of increasing size and complexity

13 responses

- Excellent: 53.8%
- Very Good: 38.5%
- Good: 7.7%
Ability to learn and use new development tools, software framework, middleware, programming language or methodology to aid in the development of software projects.

13 responses

Ability to define, assess and adhere to software quality practices, and software processes and methodologies.

13 responses
Ability to be an effective member of a multi-disciplinary software project development team with an awareness of individual, professional and ethical responsibilities.

13 responses

Ability to communicate technical concepts in a complete, concise, and correct manner, and prepare documentation and presentations; participate in team meetings, brainstorming session, code reviews or group discussions.

13 responses
Ability to develop technical and managerial skills needed to be an effective leader as an entrepreneur or in a software concern.

13 responses

Ability to pursue research in computer science area.

13 responses
Ability to recognize the need and engage in life-long learning for professional growth
13 responses

- Excellent: 46.2%
- Very Good: 7.7%
- Good: 7.7%

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
13 responses

- Excellent: 46.2%
Rate the impact of Teaching-learning process in attaining the Programme Outcomes

13 responses

- Excellent: 61.5% (53.8%)
- Very Good: 30.8%
- Good: 7.7%
- Fair: 0% (0%)

Bar chart showing the distribution of responses:
- 1 (0%) Excellent
- 1 (7.7%) Excellent
- 5 (38.5%) Excellent
- 7 (53.8%) Excellent
M.Sc Theoretical Computer Science

Name of the programme
14 responses

Feedback on the attainment of Programme Outcomes (PO)

An ability to apply the theoretical knowledge of Mathematics and Computational Sciences to model and solve real time problems.
14 responses
An ability to understand, analyze and design efficient algorithms.
14 responses

Development of soft skills and practicing professional ethics.
14 responses
An ability to design efficient protocols for advanced communication technology.
14 responses

Acquire knowledge of contemporary computational issues.
14 responses
In depth knowledge of foundations of computing.
14 responses

An ability to understand and solve emerging research problems.
14 responses
Develop programming skills to implement research projects.
14 responses

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
14 responses
Rate the impact of Teaching-learning process in attaining the Programme Outcomes

14 responses

- Excellent: 50%
- Very Good: 42.9%
- Good: 7.1%
- Fair: 0%
- 0%

Grade the quality of the programme on a scale of one to five

14 responses

- 1.0 (71.4%)
- 3.0 (7.1%)
- 5.0 (21.4%)
DEPARTMENT OF APPLIED SCIENCE

B.Sc. Applied Science

Feedback on the attainment of Programme Outcomes (PO)

<table>
<thead>
<tr>
<th>S.N</th>
<th>Programme Outcome</th>
<th>Pie Chat</th>
</tr>
</thead>
<tbody>
<tr>
<td>o/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.A</td>
<td>Applied Science knowledge: Apply the knowledge of fundamental and applied mathematics, physics and chemistry to the solution of complex scientific/engineering problems.</td>
<td></td>
</tr>
</tbody>
</table>

| 2.B | Problem analysis: Identify, formulate, research literature, and analyze scientific/engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences. | ![Pie Chart B](chart2.png) |
3.C Design/development of solutions: Design solutions for complex engineering problems and design system components, processes to meet the specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.D Conduct investigations of complex problems: Use research based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5.E Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex scientific/engineering activities with an understanding of the limitations.

6.F The scientist and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice.
7.G Environment and sustainability: Understand the impact of the professional scientific/engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.H Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the scientific/engineering practice.
9.I Individual and team work: Function effectively as an individual, and as a member or leader in teams, and in multidisciplinary settings.

10.J Communication: Communicate effectively with the scientific/engineering community and with society at large. Be able to comprehend and write effective reports, documentation. Make effective presentations, and give and receive clear instructions.
11.K Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team. Manage projects in multidisciplinary environments.

12.L Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Rate the impact of Teaching-learning process in attaining the Programme Outcomes:
Grade the quality of the programme on a scale of one (least) to five (most)

Grade the quality of the programme on a scale of one (least) to five (most)

Grade the quality of the programme on a scale of one (least) to five (most)
